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A B S T R A C T

The progression of peripapillary atrophy (PPA) is closely associated with the development of retinal diseases
such as myopia and glaucoma. PPA prediction employing longitudinal images to obtain its progress trend
can facilitate personalized treatment. Although existing studies have attempted to predict the persistence of
PPA, such studies cannot provide quantitative measurement for personalized treatment. In this paper, we
propose a spatiotemporal framework for pixel-level PPA prediction using sequential fundus images, including
feature extractor, temporal memory, and spatiotemporal prediction modules. To take advantage of historical
information, a temporal memory module is used, integrating current and prior features to build sequential
data of features. To further enhance the prediction performance, the recurrent neural network states in a
spatiotemporal prediction module transmit between different layers, enabling high-level states to guide the
learning of low-level states. To handle missing data in clinical follow-up data, we use the predicted output of
the spatiotemporal prediction module to substitute the missing data, and the scheduled-sampling strategy is
employed in training. Extensive experiments conducted using a clinical dataset demonstrate that our proposed
method achieves a satisfactory performance compared with the start-of-the-art models. The proposed approach
can be applied using clinical data to obtain various quantitative indicators for personalized treatment and
prevention of retinal disease.
1. Introduction

Peripapillary atrophy (PPA) is associated with chorioretinal thin-
ning and the disruption of retinal pigment epithelium, which can
be divided into 𝛼 and 𝛽 zones [1,2]. 𝛼-PPA is defined as irregular
pigmentation that is located circumferentially away from the optic
disc (OD) [3]. 𝛽-PPA is adjacent to OD and is characterized by the
thinning of the chorioretinal tissue with the visible sclera and choroidal
vessels [4,5]. Several studies [5–9] have found that the morphology
change of 𝛽-PPA is positively correlated to the progression of my-
opia and glaucoma, both of which may cause visual impairment or
even blindness. By analyzing the 𝛽-PPA regions in fundus images,
ophthalmologists can assess and track related fundus diseases accu-
rately. Currently, the clinical diagnosis of 𝛽-PPA regions still relies
on manual annotation by experienced ophthalmologists, whereas the
prediction of 𝛽-PPA progression requires ophthalmologists to analyze
the labeled regions in sequential data according to their experience. If
the progression of the 𝛽-PPA region can be predicted automatically in
a computer-assisted manner, ophthalmologists can detect the related
diseases at an early stage for timely treatment, which helps prevent

∗ Corresponding author.
E-mail address: huiqili@bit.edu.cn (H. Li).

visual impairment and minimize the socioeconomic cost caused by the
related diseases [10].

The progression of 𝛽-PPA is a gradual process; thus, the temporal
information for its accurate prediction should be utilized. Only sequen-
tial data inherently present temporal information, and signal-moment
images only convey transient information. Therefore, we propose to
use the sequential fundus images for 𝛽-PPA (abbreviated as PPA in this
paper) prediction.

In recent years, a few methods have been proposed for PPA predic-
tion. Li et al. [11] proposed a causal hidden Markov model for PPA
prediction, in which the hidden variables that propagate to generate
medical observation are introduced. Wu et al. [12] exploited the ir-
reversibility of prior and progression learning to predict PPA. These
two methods only predict whether there will be PPA regions at the
image level, lacking the capability to provide pixel-level information
crucial for analyzing disease progression. For other ocular disease
prediction, Pham et al. [13] proposed a generative adversarial network-
based method to determine the progression of age-related macular
degeneration by comparing the predicted drusen mask of the generated
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future fundus image with the ground truth. Although the dataset used
in this method is longitudinal, the temporal information is not as
fully explored as the methods in previous studies [11,12]. To address
this problem and provide comprehensive information for predicting
disease progression using longitudinal data, we explore to use of the
spatiotemporal prediction model.

Because the input and output are both spatiotemporal sequen-
tial data, PPA-region prediction can be regarded as a spatiotempo-
ral prediction task, in which temporal and spatial features must be
considered. The algorithms used for spatiotemporal prediction can
be divided into two categories: convolution recurrent neural network
(ConvRNN)-based methods [14–20] and transformer-based methods
[21,22]. ConvRNN-based methods sequentially process data by combin-
ing the capabilities of the convolutional neural network and recurrent
neural network (RNN) with a hybrid structure, allowing the predicted
results to supplement missing data in the input sequence. Transformer-
based methods handle historical input in parallel through transformer
blocks for self-attention learning. However, they fail to effectively
handle missing data. Although transformer-based methods capture the
long-range dependencies better than the ConvRNN-based methods, they
involve higher computational complexity and cost. Because missing
data are a common phenomenon in clinical scenarios, we anticipate
utilizing the recurrent input structure of the ConvRNN-based meth-
ods to address the challenge of incomplete input data in PPA-region
prediction.

Currently, most studies have focused on improving the ConvRNN
unit in spatiotemporal sequence prediction, such as ConvLSTM [14],
ConvGRU [15], Trajectory GRU [15], PredRNN [16], PredRNN++ [17],
SA-JSTN [18], CSA-ConvLSTM [19], and PredRANN [20]. In terms
of the overall prediction framework, two categories can be obtained:
one involves stacking multiple layers of ConvRNN units [14,20,23–25]
and the other encodes all input through stacked ConvRNN units and
reverses the connection order of RNN states during predicting (which
can guide the learning of low-level states with high-level states) [15,19,
26]. In spatiotemporal prediction, the distributions of input and output
data exhibit strong spatial similarity and highly correlated underlying
changes may exist in the temporal domain. Therefore, increasing the
dependence of predictions on memory representation learned by re-
current modules across different layers becomes important. However,
only spatiotemporal memory can be transmitted between different
layers in a zigzag direction in the existing frameworks. Other memory
states, such as the cell memory in ConvLSTM, are typically limited to
transmitting within the same layer. We facilitate the transmission of the
RNN memory states between different layers in our method to enhance
the performance of spatiotemporal prediction.

In this study, we propose a spatiotemporal framework that can
use sequential fundus images for pixel-level PPA prediction to provide
information for clinical treatment even in the presence of missing data.
The main contributions of this study can be summarized as follows:

1. We introduce a novel spatiotemporal framework that can pre-
dict future PPA regions at a pixel level using longitudinal fun-
dus images, which can assist ophthalmologists in formulating
personalized treatment plans for patients with related fundus
diseases. A temporal memory module (TMM) is proposed to
fully utilize historical information. Moreover, a spatiotemporal
prediction module based on ConvRNN is proposed, where the
RNN states transmit between different layers to improve the
prediction performance.

2. A scheduled-sampling strategy is introduced to network training,
overcoming the challenge of missing input data and improving
the model performance.

3. Comprehensive experiments are conducted to evaluate our ap-
proach. Results show that our method can achieve good per-
formance for pixel-level PPA prediction, especially when some
2

input data are missing.
2. Method

2.1. Overview

We propose a spatiotemporal prediction framework that utilizes
longitudinal data to predict the future PPA region at a pixel level.
PPA primarily appears in the vicinity of OD, and not all fundus images
contain this region. Furthermore, the PPA region grows progressively,
and its size is small at the early stage, posing challenges for network
training based on the PPA region only. By contrast, OD exhibits a regu-
lar shape and size, which makes it easy for model learning. To enhance
the performance of PPA prediction, OD information is incorporated into
the prediction task for a stable performance.

Fig. 1 illustrates the framework of the proposed method. The train-
ing process is as follows. The input images are first encoded using the
feature extractor module, which learns the segmentation features of
PPA and OD. This operation helps mitigate the influence of inconsis-
tency on imaging across different timelines and ensure the robustness
of network training. Because missing data exist in actual clinical scenar-
ios, we involve a scheduled-sampling strategy to simulate the missing
data by hiding some of the actual features randomly during training.
Specifically, when a hidden operation is performed on the data at a
certain moment, the hidden feature is replaced by the output of the
spatiotemporal prediction module at the corresponding moment. As
the proposed framework is based on ConvRNN, data are sequentially
input into the network. To fully utilize the long-term dependencies in
the temporal dimension, the output features processed by a scheduled-
sampling operation from the initial moment until the current input state
are all inputted into the TMM. Then, the output features are fed into the
spatiotemporal prediction module, which is the core component of the
proposed framework. The spatiotemporal prediction module predicts
future features based on historical data. Specifically, this module takes
the input sequence {𝐹1, 𝐹2,… , 𝐹𝑇 } and produces the output sequence
{𝐹2, 𝐹3,… , 𝐹𝑇+1}, where 𝐹𝑇+1 represents the future output feature.
Because we aim to predict the PPA region, it is crucial to process the
predicted features via a segmentation head (a convolution cascaded
after the concatenating features) to obtain the final PPA segmentation.
The loss function comprises two components: the feature loss and
segmentation loss. The feature loss is calculated based on the difference
between input features and prediction features. The segmentation loss
is calculated based on the difference between the ground truth and
the output of the segmentation head. Model training is accomplished
by optimizing this loss function. During testing in real applications,
scheduled-sampling is excluded from the model, while the other parts
remain unchanged. When data are missing, the predicted result of the
spatiotemporal prediction module at the corresponding moment is used
to substitute the missing input.

2.2. Network architecture

2.2.1. Feature extractor module
Instead of training directly using images, we use the pretraining

strategy to obtain the feature maps first and then use them as the
input for the subsequent modules. Directly using original images as
input can lead to various issues. First, owing to different conditions of
data collection, the style of fundus images can be inconsistent, which
may adversely affect the performance of the network. Second, it is
difficult for the prediction network to focus on the features of PPA
and OD. Fundus images are complicated and contain various struc-
tures, increasing the difficulty of network training, resulting in poor
prediction of PPA and OD. Moreover, owing to different distributions of
input and output, when some input data are missing, the predicted PPA
segmentation cannot be used directly to compensate for the missing
input retinal image. To handle the abovementioned issues, a feature
extractor module is used. Specifically, we train a segmentation network

using (𝑋𝑖, 𝑌𝑖), where 𝑋𝑖 and 𝑌𝑖 are the 𝑖th image and annotation labeled
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Fig. 1. Diagram of the proposed pixel-level PPA region-prediction framework.
Fig. 2. Structure of the temporal memory module. The features in the memory bank are historical features, and 𝐹𝑡 is the input feature at the current moment.
by ophthalmologists, respectively. Notably, the annotation contains two
objects: the PPA region and the OD region. We choose Unet [27]
as the segmentation structure. After pretraining, the feature extractor
module is constructed by removing the last convolutional layer, which
is originally used to project features to the number of categories for
each pixel. If the last convolution layer is not removed, the channel
of features output by the feature extractor requires expansion using
convolution operations to enrich the discriminative information, which
is equivalent to adding two unnecessary convolution operations into
the overall network. The parameters of this module are fixed during
subsequent usage to reduce the risk of forgetting previously learned
knowledge and reduce the requirement for computational resources.
3

2.2.2. Temporal memory module
Because the progression of PPA is a gradual process, fully leveraging

the temporal information can promote PPA prediction. To effectively
utilize long-term dependencies along the temporal dimension while
following the causality in sequential data, we introduce the TMM.
This module inputs the features processed by the scheduled-sampling
strategy from the initial until the current time (𝐹1,… , 𝐹𝑡), enabling
the network to retain information on past time steps. The TMM is
used starting from the second input because the historical information
is available only at the beginning of the second input. The specific
operation of the TMM is shown in Fig. 2. When 𝐹𝑡 is input, the previous
𝑡 − 1 features are sent to the memory bank. Each moment in the
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Fig. 3. Spatiotemporal prediction structure. (a) The structure proposed in Ref. [14]. (b) The structure proposed in Ref. [15]. (c) Our proposed spatiotemporal prediction module.
𝐻 represents the hidden state, and 𝑀 indicates the spatiotemporal memory state.
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memory bank is operated by the same convolution layer to generate
the key 𝑘𝑖 ∈ R𝐻 ′×𝑊 ′×𝐶′ , which is used for addressing. 𝐻 ′, 𝑊 ′, and 𝐶 ′,
representing the height, width, and number of channels of the feature
map, respectively. Then, the keys (𝑘1,… , 𝑘𝑡−1) calculated at different
moments are concatenated together and reshaped, affording 𝑘𝑀 ∈
R(𝑡−1)×(𝐻 ′⋅𝑊 ′⋅𝐶′), where 𝐶 ′ = 𝐶∕4 owing to the dimensionality reduction
during convolutional operation to reduce the amount of calculation and
𝐶 is the channel number of original features. The current input 𝐹𝑡 is
used as the query feature, which is performed by another convolution
layer and reshaped to generate the query 𝑞 ∈ R1×(𝐻 ′⋅𝑊 ′⋅𝐶′).

Because each historical moment has a distinct impact on the present
input, it is crucial to assess the significance of every previous input
by evaluating the similarity between the query and each key. By
calculating and normalizing the similarity scores using Formula (1), we
can obtain the corresponding weight assigned to each key. A higher
weight signifies a more pronounced impact of the historical moment
on the current input.

𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑘𝑀𝑞𝑇
√

𝑡 − 1
) (1)

The obtained weights can be used to weigh and sum the features
present in the original memory bank for producing the integrated
historical feature 𝐹 ∈ R𝐻 ′×𝑊 ′×𝐶 . Subsequently, the obtained feature
4

ℎ𝑖𝑠 t
is concatenated with the query feature to get 𝐹 ∈ R𝐻 ′×𝑊 ′×2𝐶 . Finally,
the dimensionality reduction operation is performed to obtain the final
output feature 𝐹𝑇𝑀𝑀 ∈ R𝐻 ′×𝑊 ′×𝐶 , which is sequentially inputted to
he spatiotemporal prediction module.

.2.3. Spatiotemporal prediction module
In spatiotemporal prediction tasks, a common method to improve

odel representation is to stack multiple layers of the ConvRNN units
o expand the convolutional domain. ConvLSTM [14] is a fundamental
echnique for spatiotemporal sequence prediction, which incorporates
onvolution operations into long short-term memory (LSTM) [28] to
apture spatial context information. Some similar network structures
ave been proposed by replacing LSTM with different RNN struc-
ures [29,30], such as ConvGRU and Trajectory GRU proposed in
ef. [15]. However, the transmission of spatial information across
ifferent layers may be inadequate when using the abovementioned
onvRNN units, thus hindering the effective propagation of infor-
ation. To address this issue, PredRNN [16] and PredRNN++ [17]

ntroduce an additional global spatial memory to preserve the spatial
eatures of each layer. Although these methods can capture spatial
nd temporal information simultaneously, they rely on modeling local
ontext information obtained through convolutional operations for cap-
uring spatial information. To capture local and global spatial features
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simultaneously, a self-attention mechanism has been incorporated into
the ConvRNN unit in previous studies [18,19].

Existing methods primarily focus on optimizing the ConvRNN unit.
When considering information interaction between different layers,
current research mainly emphasizes spatial information and ignores
memory information. In spatiotemporal learning, the distributions of
input and output data are very similar in the spatial domain, so
there may be highly correlated underlying changes in the temporal
domain. Thus, enabling the transmission of memory information be-
tween different layers is very important. The overall framework of
current spatiotemporal prediction research can be summarized into two
categories, which are shown in Fig. 3(a) and (b). The method of directly
stacking multiple layers of the ConvRNN units (stack-ConvRNN) [14]
(Fig. 3(a)) can output predicted results for each timestamp but can-
not fully utilize the memory information across different layers, in
which only spatiotemporal memory 𝑀5 can be transmitted between
different layers along a zigzag direction (blue arrow in Fig. 3), while
other memories can only be transmitted within the same layer. The
structure shown in Fig. 3(b) is the enhanced version [15] of Fig. 3(a)
where the order of memory information in the predictor is reversed
to enable the high-level states to guide the learning of low-level states
(reverse-ConvRNN). Meanwhile, downsampling and upsampling opera-
tions are added to reduce the amount of calculation and memory usage.
However, the structure presented in Fig. 3(b) also has the following
limitations: (1) the structure first encodes all inputs and then performs
predicting operations, resulting in the incapability to obtain predicted
outputs for all timestamps. Therefore, this structure fails to handle
missing data, as the common solution is to substitute the missing
data with the predicted outputs. (2) The structure fails to fully utilize
memory information between different layers at all timestamps, as it
only achieves the transmission of all memory states between different
layers when predicting the timestamp 𝑡 + 1.

To address the abovementioned limitations, we propose a spa-
tiotemporal prediction module inspired by the structures presented
in Fig. 3(a) and (b). The proposed module is shown in Fig. 3(c),
in which the advantages of the predicted results for each timestamp
and the memory information transmitted between different layers are
combined. Specifically, the first three layers are encoders that encode
the feature of the current moment, and the last three layers are the
predictors that predict the feature of the next moment. This structure
enables predictions for all timestamps, making the structure suitable
for scenarios with missing input data. Moreover, for the ConvRNN
units in the encoder, the RNN memory states of the horizontal input
are the output of the previous moment, while for the ConvRNN units
in the predictor, the horizontal input is the sum of the output at
the previous moment and the output of the corresponding encoder
layer at the current moment. The connection of the predictor enables
the horizontally transmitted memory information to be fully utilized
between different layers.

2.3. Scheduled-sampling

To address the challenge of missing input data in actual clinical sce-
narios, commonly, the missing input is substituted with the predicted
output of the spatiotemporal prediction module during inference. How-
ever, if missing data are ignored in the training phase, the error of
the previous output might rapidly accumulate, affecting the prediction
of follow-up sequences. To address this issue, a sampling strategy is
introduced during training, which can simulate the clinical situation
and force the model to learn more about long-term information to
improve its generalization. The specific operations are as follows, which
are inspired by Refs. [31,32]. First, some real inputs are randomly
hidden for the sequence data except the initial input. Then, the output
of the spatiotemporal prediction module is used to replace the hidden
data as the input of the TMM; the replacement is indicated by the green
arrows marked in Fig. 1. We assumed that the probability of the hidden
operation for the sequence data is 𝑝. At the beginning of training, 𝑝 is
set to 0. When the network learning tends to be stable, 𝑝 is gradually
5

increased to simulate the clinical situation of missing data. l
2.4. Loss function

The loss function for optimizing the entire network can be expressed
using Eq. (2), which comprises two parts: feature consistency loss
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and segmentation loss 𝑠𝑒𝑔 .

 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + 𝑠𝑒𝑔 (2)

Feature consistency loss: This loss imposes constraints between
features output by the feature extractor module and the predicted fea-
tures [33]. In practical applications, it is common to encounter missing
data at certain timestamps. When performing consistency constraints
on the features of each timestamp, the output of the spatiotemporal
prediction module can replace the missing input, addressing the issue of
missing data. The feature consistency loss can be formulated as follows:

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
1
𝑁

𝑁
∑

𝑖=1
(𝐹𝑖,2∶(𝑇+1) − 𝐹𝑖,2∶(𝑇+1))2 (3)

here 𝐹𝑖,2∶(𝑇+1) represents the features output by the feature extractor
rom time 2 to 𝑇 + 1 of the data group 𝑖 and 𝐹𝑖,2∶(𝑇+1) indicates the
eatures output by the spatiotemporal prediction module from time 2
o 𝑇 + 1 of the data group 𝑖. 𝑁 is the batch size.
Segmentation loss: This loss is calculated based on the difference

etween the ground truth and the output of the segmentation head,
hich is a combination of cross-entropy loss and dice loss [34,35],
s described in Eq. (4). Combining these two loss functions allows
he model to focus on classification accuracy and segmentation ac-
uracy. The segmentation task is equivalent to performing multiple
lassifications on each pixel. Cross-entropy loss is a standard loss
unction used for multiclass classification problems, ensuring accurate
ixel-level classification. The PPA region occupies a small proportion
ompared with the background within the image, leading to a class
mbalance issue. The utilization of the dice loss helps handle this
mbalance, thus improving the model performance.

𝑠𝑒𝑔 = − 1
𝑁

𝑁
∑

𝑖=1

𝐶𝑙𝑠
∑

𝑗=1
𝑌𝑖,𝑗 𝑙𝑜𝑔(𝑌𝑖,𝑗 ) +

1
𝐶𝑙𝑠 − 1

𝐶𝑙𝑠
∑

𝑗=2

(

1 −
2 ×

∑𝑁
𝑖=1 |𝑌𝑖,𝑗 ∩ 𝑌𝑖,𝑗 |

∑𝑁
𝑖=1 |𝑌𝑖,𝑗 | + |𝑌𝑖,𝑗 |

)

(4)

here 𝐶𝑙𝑠 represents the number of categories, which is set to 3 in our
pplication, including background, PPA, and OD. Only the foreground
s calculated to determine the dice loss. Because there is no PPA
egion in some images, the dice loss is computed on a per-batch basis.
ccording to the scheduled-sampling strategy, 𝑌𝑖 contains two results

or the data group 𝑖: the segmentation result obtained by decoding
he output of the feature extractor and the prediction result obtained
y decoding the output of the spatiotemporal prediction module. 𝑌𝑖
epresents the group truth of the data group 𝑖, in which moments
orrespond to those in 𝑌𝑖.

The pseudo-code of our method for real applications is shown in
lgorithm 1.

. Experiments

.1. Dataset description

The dataset used in following experiments is provided by the Beijing
nstitute of Ophthalmology, Beijing Tongren Hospital; the data were
ollected from the same group of primary school students from grade
ne (age 6.3±0.4 years, 2011) to six (2016) in Dongcheng and Huairou
istricts, Beijing, China. All the fundus images were acquired by a 45◦,
R-DGI camera, Canon Inc, Tokyo, Japan, in 2011–2013, and a 45◦,
R-II camera, Canon Inc, Tokyo, Japan, in 2014–2016. The collected
ata were grouped based on individual patients with a label indicating

eft or right eyes. Only the groups with complete data for 6 years were
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Algorithm 1 The practical application of our method.
Input:

Input sequential images: {𝑋1,⋯ , 𝑋𝑇 } If 𝑋𝑖(𝑖 ∈ [2, 𝑇 ]) is missing, it is
set to None.
Initialization parameters:

𝐻 ∶ Hidden state
𝐶 ∶ Memory state

Variable definitions:
𝐸𝑛𝑐 ∶ Feature extractor module
𝑇𝑀𝑀 ∶ Temporal memory module
𝐶𝑜𝑛𝑣𝑅𝑁𝑁 ∶ Spatiotemporal prediction module
𝑆𝑒𝑔 ∶ Segmentation head

Output:
Predicted PPA regions: {𝑌2,⋯ , 𝑌𝑇+1}
for 𝑖 in [1, 𝑇 ] do
if 𝑖 == 1 then
𝐹𝑖 = 𝐸𝑛𝑐 (𝑋𝑖)
𝐹𝑖+1,𝐻, 𝐶 = 𝐶𝑜𝑛𝑣𝑅𝑁𝑁 (𝐹𝑖,𝐻, 𝐶)

else
if 𝑋𝑖 is None then
𝐹𝑖 = 𝐹𝑖

else
𝐹𝑖 = 𝐸𝑛𝑐 (𝑋𝑖)

end if
𝐹𝑇𝑀𝑀 = 𝑇𝑀𝑀 ([𝐹1,⋯ , 𝐹𝑖−1], 𝐹𝑖)
𝐹𝑖+1,𝐻, 𝐶 = 𝐶𝑜𝑛𝑣𝑅𝑁𝑁 (𝐹𝑇𝑀𝑀 ,𝐻, 𝐶)

end if
𝑌𝑖+1 = 𝑆𝑒𝑔(𝐹𝑖+1)

end for

retained, amounting to a total of 342 groups. The resolutions of the
original fundus images include 2592 × 3888, 1696 × 2544, 1728 ×
592, and 1556 × 1924. We selected 250 groups as the training set, 42
roups as the validation set, and the remaining 50 groups as the test
et. When evaluating the situation of missing input data in the follow-
p sequences, we randomly pruned data from the test set, where one
mage was missing from 25 groups and two images were missing from
he other 25 groups. The missing data were selected from grades 2 to
. In the following experiments, we refer to the test set without missing
ata as Dataset 1 and the test set with missing data as Dataset 2. The
maging condition of fundus images collected at different moments is
ot exactly the same.

To eliminate this effect and facilitate the intuitive observation of
hanges in the PPA region, registration was performed for each group.
e treated the first-year image as the standard and registered other

mages using a partial intensity invariant feature descriptor [36]. As
PA primarily appears in the vicinity of OD, we used the region of
nterest (ROI) area that focused on the region surrounding OD for
he following experiments to reduce the complexity of model learning.
he ROI area was extracted according to the pretrained segmentation
odel followed by a resize operation to 512 × 512. One example of the

riginal input is shown in Fig. 4(a), and the extracted ROI region after
egistration is shown in Fig. 4(b).

.2. Implementation details

Because each group in the dataset contains 6 years of clinical data,
he fundus images of the first 5 years were used in the experiment to
redict the region of PPA in the sixth year. The code of our proposed
ethod was implemented using PyTorch. The models were trained on

n AMD Ryzen Threadripper 3960X 24-Core Processor and a NVIDIA
TX 3090 24G GPU. For all experiments, 100 epochs were trained.
he initial learning rate was set to 0.0003, and the cosine annealing
6

strategy was used. The epoch number and learning rate were deter-
mined via experiments. An excessively large learning rate could lead
to training instability, while a small learning rate might result in a
slow training process. The cosine annealing strategy could prevent
model overfitting and enhance model stability. We followed existing
spatiotemporal prediction methods [15–20] to use the Adam optimizer.
The batch size comprised four groups of data that could fully utilize
the hardware resources of GPU. When using the scheduled-sampling
strategy, we started with 𝑝 = 0 for the first 30 epochs, increased 𝑝 to
0.5 linearly from epoch 30 to 60, and then kept 𝑝 at 0.5 after epoch
60. The parameter setting was determined based on the validation loss
obtained during training without scheduled-sampling. When the epoch
number was 30, the decline rate of loss tended to be gentle and the
model gradually became stable. When the epoch number exceeded 90,
the validation loss showed minimal fluctuation. The epoch range 30–
90 contained two phases: linearly increasing 𝑝 and maintaining 𝑝 at a
onstant value. We distributed these 60 epochs equally to accommodate
oth the phases. For data augmentation, we applied random left–right
lipping, random Gaussian noise, random motion blur, and random
rightness and contrast change of the input image. In the test phase,
he model with the lowest loss on the validation set was selected.

The 𝐹1 𝑠𝑐𝑜𝑟𝑒, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 were used to evaluate
he performance of prediction results. The performance evaluation
etrics were calculated using the following formulas:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(7)

1 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(8)

where 𝑇𝑃 refers to the number of pixels of the PPA area labeled as
PPA, 𝐹𝑃 denotes the number of pixels of background labeled as PPA,
𝐹𝑁 represents the number of pixels of PPA masked as background,
and 𝑇𝑁 indicates the number of pixels in background labeled as back-
ground. Because 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 are often mutually restrictive,
the 𝐹1 𝑠𝑐𝑜𝑟𝑒 can comprehensively consider the abovementioned two
metrics. Therefore, the 𝐹1 𝑠𝑐𝑜𝑟𝑒 is the main metric for evaluating the
quality of models. We also ran a statistical test using the Mann–Whitney
U test [37], and we consider that the results are significantly different
when the 𝑝-value is less than 0.05 (i.e., 𝑝 < 0.05).

3.3. Comparison with other methods

Currently, only the methods proposed in Refs. [11,12] are reported
for PPA prediction; however, these two methods are used to predict
the existence of PPA in a future stage and cannot be refined to pixel-
level prediction. Moreover, because the data used in these methods
contain image data as well as clinical measurements, our method
cannot be compared fairly with them. As pixel-level PPA prediction is a
spatiotemporal prediction method in essence, we compare our method
with the ConvRNN-based methods including stack-ConvLSTM [14] and
reverse-ConvLSTM [15], as well as transformer-based methods, in-
cluding encoder–decoder transformer [21] and encoder–decoder Swin
transformer [22].

In this comparison study, ConvLSTM is selected as the ConvRNN
unit in our method. Table 1 presents the comparison of the results of
different spatiotemporal prediction methods using Dataset 1, in which
no missing data exist. To compare the quantitative results of different
methods intuitively, we draw a multicriterion graph of each metric
presented in Table 1, as shown in Fig. 5(a). Because the 𝐹1 𝑠𝑐𝑜𝑟𝑒 is a
comprehensive metric, it is considered to be the highest priority metric
when evaluating the model performance. The ConvRNN-based methods
are shown to generally perform better than the transformer-based
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Fig. 4. Data preprocessing. (a) Original sequential images of an individual patient. (b) The corresponding extracted ROI after registration.
Fig. 5. Multicriterion graphs obtained for a comparison study. The highest priority metric 𝐹1 𝑠𝑐𝑜𝑟𝑒 is represented by the line chart, with the corresponding scale (%) shown on
the right axis. Other metrics are represented by the bar chart, with the corresponding scale (%) shown on the left axis. (a) Results obtained using Dataset 1. (b) Results obtained
using Dataset 2, in which the first four methods use interpolation to simulate missing data.
methods. Compared with stack-ConvLSTM and reverse-ConvLSTM, our
method not only transmits memory information between different lay-
ers but also completely utilizes temporal information, leading to the
best performance among these methods. Fig. 6 shows the visual com-
parison between our method and others using Dataset 1. The predic-
tions obtained by our method are closer to the ground truth.

In actual clinical applications, follow-up data often have missing
data. Therefore, we also compare our method with different spatiotem-
poral prediction methods using Dataset 2 comprising missing data.
The issue of missing input data has not yet been considered in the
comparison methods presented in Table 1. In clinical research, this
situation is commonly addressed by replacing the missing data via
means of interpolation based on adjacent data. In our proposed method,
missing data are simulated during training instead of interpolation of
input data. Our method uses all training data but incorporates the
7

Table 1
Prediction results of different spatiotemporal prediction methods using Dataset 1. The
value after ± indicates the standard deviation.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

Transformer 79.829 67.839 99.254 73.346 (±0.223)*
Swin transformer 84.889 63.308 99.274 72.521 (±0.158)*
Stack-ConvLSTM 79.058 69.689 99.262 74.077 (±0.393)*
Reverse-ConvLSTM 79.353 69.864 99.269 74.307 (±0.281)*

Ours 79.605 70.744 99.283 74.910 (±0.189)

* Indicates that the difference between our method and the other methods is significant
(𝑝 < 0.05).

scheduled-sampling strategy during training to simulate missing data
by randomly hiding a part of actual features. In testing, the missing
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Fig. 6. Visual prediction results of different spatiotemporal prediction methods using Dataset 1.
Fig. 7. Visual prediction results of different spatiotemporal prediction methods using Dataset 2. Blank areas indicate missing data.
Table 2
Prediction results of different spatiotemporal prediction methods using Dataset 2. The
value after ± indicates the standard deviation.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

Transformer+interpolation 79.801 63.757 99.207 70.881 (±0.346)*
Swin transformer+interpolation 84.049 59.671 99.218 69.786 (±0.245)*
Stack-ConvLSTM+interpolation 79.623 65.624 99.226 71.945 (±0.361)*
Reverse-ConvLSTM+interpolation 80.890 65.085 99.239 72.131 (±0.194)*

Ours 78.474 67.693 99.230 72.676 (±0.250)

* Indicates that the difference between our method and the other methods is significant
(𝑝 < 0.05).

data are estimated in advance using interpolation for other comparative
methods. The quantitative results are shown in Table 2, and the multi-
criterion graph is presented in Fig. 5(b). Compared with interpolation
methods, our method achieves better results using other metrics except
for its weaker performance when using 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. For the highest
priority metric 𝐹1 𝑠𝑐𝑜𝑟𝑒, our method achieves the best performance.
Fig. 7 shows the visual comparison between our method and others
applying interpolation using Dataset 2. The predictions obtained using
our method are closer to the ground truth. Because our method with
scheduled-sampling takes advantage of the characteristics of sequential
input of the ConvRNN structure by directly compensating the missing
input with the predicted output of the spatiotemporal prediction mod-
ule, our method is more convenient to operate compared with other
methods using interpolation to address missing data and can better
learn the spatiotemporal changes through the input data. Irrespective
of the presence of missing data in the test set, our method can achieve
the best prediction performance quantitatively and visually. Moreover,
our method significantly outperforms (𝑝 < 0.05) the other methods for
the 𝐹1 𝑠𝑐𝑜𝑟𝑒.
8

3.4. Generalizability verification

The proposed method sequentially processes data and can output
the result of the next moment after each input. As missing data are also
considered during training, our method can predict future timestamps
for any given years of data. To assess the generalizability of our method,
we randomly select several years of data from Dataset 1 to predict
the PPA region of the next 1 and 2 years, with quantitative results
shown in Table 3. Our method achieves good prediction results under
every listed condition, and its 𝐹1 𝑠𝑐𝑜𝑟𝑒 can reach more than 69%. In
addition, as the input years increase, the prediction results become
more accurate, exhibiting the advantage of using longitudinal images
for future prediction.

Figs. 8 and 9 show the visual results. Fig. 8 presents the results of
predicting the PPA regions in grades 4 and 5 by inputting the data of
grades 2 and 3. Fig. 9 shows the results of predicting the PPA regions in
grades 5 and 6 by inputting the data of grades 1, 3, and 4. Figs. 8 and
9 show that the prediction results obtained by our method are close
to the ground truth. In addition, the change of PPA over time shows
that our model can learn the progression of PPA, especially as shown
by Example 1 in Fig. 9. Our method can also successfully predict when
PPA will appear even though there is no PPA in the input images. Both
quantitative and visual results show that our method can effectively
predict the PPA regions with remarkable generalizability.

3.5. Ablaton study

To demonstrate the generality of the proposed spatiotemporal
framework, different ConvRNN units are compared, including ConvL-
STM [14], ConvGRU [15], and spatiotemporal LSTM (ST-LSTM) [16].
The experimental results are shown in Table 4. We regard the model
without TMM and the scheduled-sampling strategy as the baseline.
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Table 3
Prediction results under various conditions.

Ours w/SS Ours w/o SS + interpolation

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

Two years data→next year result 78.341 65.266 99.391 71.205 79.417 63.613 99.390 70.640
Three years data→next year result 79.421 67.465 99.348 72.955 79.670 66.567 99.343 72.530
Four years data→next year result 80.766 68.433 99.324 74.089 81.298 67.776 99.325 73.923

Two years data→two-year later result 76.289 63.326 99.297 69.201 81.821 54.582 99.282 65.479
Three years data→two-year later result 78.831 64.266 99.265 70.805 81.500 59.516 99.252 68.793
Four years data→two-year later result 79.020 66.035 99.220 71.929 78.871 65.850 99.216 71.774
Fig. 8. Predicted PPA results of age in grades 4 and 5 by inputting the data of grades 2 and 3.
Fig. 9. Predicted PPA results of age in grades 5 and 6 by inputting the data of grades 1, 3, and 4.
s
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n Tables 1–4, the term ‘Ours’ indicates the proposed spatiotemporal
ramework. When using the baseline to test Dataset 2, the interpolation
ethod is applied to estimate missing data. Table 4 shows that no
atter which ConvRNN units are adopted, our method can achieve

etter results using Datasets 1 and 2 when compared with the baseline.
he results show that the proposed spatiotemporal framework is gener-
lizable and can be extended to other ConvRNN units. In the following
xperiments, ConvLSTM is selected as the backbone of the ConvRNN
nit.

We first verify the effectiveness of the feature extractor. The experi-
ental results are shown in Table 5, which are performed using Dataset
. At this stage, we only discuss the baseline model. Table 5 shows that
he prediction performance of the network is considerably improved
fter incorporating the feature extractor module.

Then, we compare the baseline result of the ConvLSTM unit pre-
ented in Table 4 with the results of the stack-ConvLSTM and reverse-
onvLSTM units presented in Tables 1 and 2. Only the spatiotemporal
rediction module is different in the above three methods. We can
9

b

ee that the use of the spatiotemporal prediction module can afford a
igher 𝐹1 𝑠𝑐𝑜𝑟𝑒, which shows that the memory information transmitted
n different layers can improve the prediction performance.

Furthermore, we verify the effectiveness of TMM and scheduled-
ampling strategy. Table 6 displays the results of the ablation study.
hen analyzing Dataset 2, except for the last row that uses the pre-

icted result to substitute missing data, the other rows use the in-
erpolation method to solve the problem of missing data. The result
hows that the TMM can improve the performance compared with the
aseline model. Because the input data of the spatiotemporal prediction
odule are sequential, the previous information will be gradually

orgotten with time. The TMM enables the input at each moment to
ake full use of the historical information, resulting in more effi-

ient use of long-term dependencies in the temporal dimension. When
he scheduled-sampling strategy is further added to network training,
he performances when using Datasets 1 and 2 are improved. The
cheduled-sampling strategy simulates the lack of data during training
ut still uses all the training data. Hiding a part of the actual data
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Table 4
Ablation test conducted on different ConvRNN units.

Dataset 1 Dataset 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

ConvLSTM Baseline 78.976 70.636 99.271 74.573 80.152 66.230 99.241 72.527
Ours 79.605 70.744 99.283 74.910 78.474 67.693 99.230 72.676

ConvGRU Baseline 79.145 69.728 99.263 74.119 80.111 65.957 99.236 72.330
Ours 78.590 70.569 99.264 74.363 77.525 68.463 99.222 72.708

ST-LSTM Baseline 79.229 70.185 99.270 74.433 79.851 66.598 99.240 72.625
Ours 78.945 70.771 99.272 74.635 77.162 68.803 99.220 72.743
Table 5
Ablation study of feature extractor module using Dataset 1.

Feature extractor 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

64.485 64.546 98.923 64.483
✓ 78.976 70.636 99.271 74.573

can force the network to learn long-term information to afford better
performance. We also verify the effectiveness of scheduled sampling in
more general scenarios. Table 3 shows the experimental results. The
table shows that our method outperforms the interpolation method,
especially in predicting long-term future moments. The interpolation
method heavily relies on temporal smoothness and may be biased if the
subject’s condition deteriorates, while our method uses the predicted
results to fill in the missing data, which can better learn the change in
PPA through the input data to obtain more accurate prediction results.

To explore the impact of the proposed modules on the computa-
tional complexity of the network, we conduct an ablation study for
complexity analysis. The results are shown in Table 7. After adding
the TMM, 1.745 giga (G) of floating point operations (FLOPs) and
0.002 mega (M) parameters (Params) are increased. After further
adding the scheduled-sampling strategy, no change is observed in
the number of Params and FLOPs. The experiments demonstrate that
incorporating the proposed modules enables the network to capture
long-term dependencies more effectively in the temporal dimension,
resulting in improved performance when compared with the baseline
with a limited increase in computational resource consumption.

4. Discussion

The above experiments have shown the effectiveness of our frame-
work. We first utilize the feature extractor module to encode the seg-
mentation features of sequential fundus images. Then, the scheduled-
sampling strategy is used to simulate the situation of missing data in
practical application. To fully utilize the long-term dependencies in
the temporal domain, the TMM is used. Finally, the spatiotemporal
prediction module combined with a segmentation head is used to
obtain the final prediction results. We have verified the generality of
our proposed framework in experiments using different ConvRNN units,
including ConvLSTM, ConvGRU, and ST-LSTM. For a general extension,
any ConvRNN unit can be used in our framework to further improve
the PPA prediction performance.

In the field of ocular disease prediction, most methods use sequen-
tial data to predict diseases at the image level, which cannot provide
sufficient information for disease progression [11,12]. The method
reported in Ref. [13] can be used to obtain the progression trend of age-
related macular degeneration by generating fundus images at future
moments. However, this method only takes a single moment’s image
as input; therefore, it lacks temporal information in comparison with
sequential data. Disease progression is gradual and patient-specific,
making temporal information essential for accurate prediction. Our
method can not only effectively utilize the temporal information in
sequential data but also refine the prediction to the pixel level.

The objective of this study is to predict the PPA region. Vari-
10

ous structures, textures, and details of fundus images will impact the
model’s learning of PPA. Although the pretrained feature extractor
module can extract accurate PPA segmentation features, PPA is not
obvious at the early stage of development, making precise segmenta-
tion a challenge during this stage. The inaccurate PPA segmentation
feature will influence the subsequent prediction stage, leading to false
predictions. In our future study, we will focus on how to obtain precise
segmentation features.

The scheduled-sampling strategy simulates missing data by ran-
domly hiding real input features during training. In practical applica-
tions, the features predicted by the spatiotemporal prediction module
can be used to substitute the missing data. Although the scheduled-
sampling strategy can obtain good performance when dealing with
missing data, differences between the filled predicted features and
the real features remain, which will also lead to false predictions.
Furthermore, in the current way of estimating missing data during
training, although the input data are reduced, the number of iterations
required for the model is not decreased. In the future study, we will
explore a method that only uses sequential data and time intervals
to achieve PPA prediction, especially in scenarios where data may be
missing.

Our proposed framework is designed for PPA prediction, but it is
also a spatiotemporal prediction framework that can provide inspi-
ration for other spatiotemporal prediction problems such as drusen
prediction [13] and precipitation nowcasting [25,26].

5. Conclusion

In this study, we propose a spatiotemporal framework for pixel-level
PPA prediction using sequential fundus images. Our approach inte-
grates a TMM as well as a spatiotemporal prediction module based on
ConvRNN and employs a scheduled-sampling strategy during training.
Our method enables the accurate prediction of the PPA region even
in the presence of missing data, thereby enhancing the ability to gain
quantitative insights into disease progression.

Our framework is trained on 250 groups of data and tested on
50 groups of data. The experimental results showed that our method
achieves the highest 𝐹1 𝑠𝑐𝑜𝑟𝑒 regardless of the completeness of the
input follow-up data, i.e., whether tested using Dataset 1 without
missing data (74.910%) or Dataset 2 with missing data (72.676%). Our
method is designed to transmit memory information between different
layers in a spatiotemporal prediction module, and the integration of
the TMM can make full use of the memory information across diverse
inputs and different layers of the same input, thereby enhancing the
𝐹1 𝑠𝑐𝑜𝑟𝑒 by 0.826%.

Compared with the interpolation method, our method with the
scheduled-sampling strategy during training can effectively handle the
challenge of incomplete follow-up data, achieving better prediction
performance without requiring additional processing of the input data.
Because the follow-up data are often incomplete in actual clinical
scenarios, our method has considerable practical value for clinical
application. Our findings highlight the potential of our approach in
predicting pixel-level PPA regions, representing a notable advancement
in personalized patient diagnosis and treatment. Moreover, our method

can inspire spatiotemporal prediction in other applications.
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Table 6
Ablation study using the TMM and scheduled-sampling (SS).

Dataset 1 Dataset 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹1 𝑠𝑐𝑜𝑟𝑒

Baseline 78.976 70.636 99.271 74.573 80.152 66.230 99.241 72.527
Baseline+TMM 79.679 70.669 99.283 74.903 80.270 66.348 99.244 72.647
Baseline+TMM+SS 79.605 70.744 99.283 74.910 78.474 67.693 99.230 72.676
Table 7
Complexity analysis of the ablation study.

Baseline TMM SS FLOPs (G) Total params (M) Trainable params (M)

✓ 433.754 32.829 0.308
✓ ✓ 435.499 32.831 0.310
✓ ✓ ✓ 435.499 32.831 0.310

Although the present investigation is a pioneer study using sequen-
ial fundus images for future-stage pixel-level PPA-region prediction,
ur method has some limitations. In future research, we will further
mprove the performance of the feature extractor module to obtain
ore precise segmentation features. Moreover, we will improve the

rchitecture to only use sequential data and time intervals to achieve
PA prediction.
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